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An algorithm for stabilizing, characterizing, and tracking unstable steady states and periodic orbits in
multidimensional dynamical systems is presented. The algorithm requires only one variable to be moni-
tored and only one parameter to be perturbed for the stabilization of states with many unstable degrees
of freedom and possibly an infinite number of stable degrees of freedom. The system is identified in
terms of a linear recursive model with coefficients determined from successive readings of the variable
subject to small random perturbations of the parameter. These coefficients determine the appropriate
perturbations for control and also provide a direct route to the eigenvalues of the autonomous system.
Spatially extended systems with an infinite number of degrees of freedom can be reduced to n effective
dimensions that involve all the unstable manifolds and the weakly attracting stable manifolds. The
remaining highly attracting manifolds are treated as one lumped eigenvector with an eigenvalue close to
zero. The algorithm also allows the effective dimension of the state to be determined.

PACS number(s): 05.45.+b, 82.40.Py, 82.40.Bj

I. INTRODUCTION

Major strides have been made over the past few years
in controlling chaos in low-dimensional systems [1]. Un-
stable periodic orbits have been stabilized in magnetoelas-
tic strips [2], electronic circuits [3,4], laser systems [5,6],
and chemical reactions [7-9], and recent reports of sta-
bilizing periodic rhythms in heart tissue [10] and induc-
ing periodic and chaotic behavior in hippocampal brain
tissue [11] have stimulated widespread interest. It is clear
that new developments in controlling dynamical systems
offer opportunities for potentially important practical ap-
plications.

Several theoretical approaches have been advanced for
stabilizing periodic orbits in chaotic systems. The feed-
back method proposed by Ott, Grebogi, and Yorke
(OGY) [1,12] and the various modifications of this
method have been the most popular. The OGY method
is appealing because it is easily understood in terms of the
system state in phase space. Stabilizing an unstable orbit
simply involves perturbing the system such that the
stable manifold of the orbit is targeted at each return.
Thus, the positions of the system state and fixed point are
known (in a suitable Poincar€ section), and the effect of
the perturbation is explicitly defined. Other control
methods, including the continuous feedback algorithm of
Pyragas [13,14], are described and compared to the OGY
method by Alsing, Gavrielides, and Kovanis [15].

In systems that can be described by effectively one-
dimensional (1D) maps, the OGY method can be reduced
to an algorithm that directly targets the fixed point rather
than the stable manifold [16,17]. The reduced algorithm
is attractive for experimental applications because it re-
quires minimal computational effort [3,5,7]. It can also
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be easily modified to permit tracking unstable steady and
periodic states through bifurcation sequences [18,19].
Unstable periodic orbits [4,20] and steady states [21-23]
have also been tracked with techniques that minimize
fluctuations around the targeted fixed point.

It is known that the simple map-based approach may
fail, even when a system is low dimensional and governed
by a 1D map [17]. This arises when the fixed point is
shifted away from the unstable manifold of the original
attractor as the parameter is perturbed. In such cases,
the perturbed system can no longer be described in terms
of the shifted 1D map, which causes the method to fail.
Rollins, Parmananda, and Sherard [24] have recently
proposed a recursive algorithm that corrects for this
effect. They added a linear recursive term to the map-
based algorithm, following an earlier suggestion by
Dressler and Nitsche [25] for modifying the OGY
method when time-delay coordinates are used. This
yields a one-variable, one-parameter method that allows
stabilization in the otherwise pathological case when the
fixed point is shifted away from the original unstable
manifold [8].

Stabilizing and tracking states with more than one un-
stable direction remains an important challenge. Such
states are common in spatially extended systems, and
techniques beyond those developed for low-dimensional
systems will be required for controlling spatiotemporal
chaos. Simple techniques may be successful in certain
spatiotemporal systems, such as when the behavior is
highly spatially correlated [19]. Spatiotemporal chaos
has also been controlled in a convectively unstable sys-
tem, where the stabilized behavior is swept into the sur-
rounding regions [26]. Proportional feedback has been
used to stabilize periodic behavior in a coupled map lat-
tice by multiple pinnings at locally stabilized sites, where
the density of sites is increased until ordered behavior is
exhibited [27]. Auerbach et al. [28] have proposed a
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generalization of the OGY approach, applicable to sys-
tems with one unstable and many stable degrees of free-
dom. Romerias et al. [29] have developed an approach
for stabilizing states with multiple unstable directions
and have applied this to a kicked double rotor model. It
was necessary, however, to monitor all of the system vari-
ables for control.

In this paper, we present a general method for stabiliz-
ing and characterizing states with many unstable degrees
of freedom and possibly an infinite number of stable de-
grees of freedom. This generalization provides an explicit
connection between the OGY and related phase space ap-
proaches and the linear control routines of classical
single-input single-output (SISO) systems [30]. The sta-
bilization of high-dimensional unstable steady or periodic
states requires only one system variable to be monitored
and only one system parameter to be perturbed. The
essential features of the approach are illustrated in Sec. I1
by considering a simple two-variable system, beginning
with the case in which the system variables can be moni-
tored directly and then generalizing this to a single exper-
imental observable. A generalization of the approach to
an n-dimensional system is described in Sec. III. The al-
gorithm is applied in Sec. IV to stabilize and characterize
an unstable four-cell flame front of the Kuramoto-
Sivashinsky equation, which is found to have six unstable
degrees of freedom. The method is also applied to stabi-
lize and track a periodic orbit with two unstable direc-
tions. The advantages and limitations of the approach
along with potential applications are described in Sec. V.

II. TWO-VARIABLE SYSTEM ILLUSTRATION

A geometric description of the general stabilization
method can be developed by considering its application
to a simple two-variable system. The system behavior
around the unstable steady state is described by two
linearized equations. Discrete dynamics is assumed,
reflecting an experimental setting in which the system is
sampled and perturbed at a fixed rate. Oscillatory
behavior in the vicinity of an unstable periodic orbit can
be reduced to linear discrete-time equations by using a
suitable Poincaré section.

For illustration purposes, we imagine that £, and &,,
the coordinates along the system eigenvectors, are moni-
tored at regular time intervals to give the set of data pairs
(&1,i»€5,;). If the ith point lies away from the fixed point
(&1,7»&,,r) and if the characteristic exponents describing
the motion along the eigenvectors are A, and A,, respec-
tively, then the discrete-time equations of motion for the
i +1 point are

Siivi—ELr=ME ;i —ELF)
Sriv1— 6 r=MEy — &0 F) -

For convenience, we assume that the fixed point lies at
the origin: (§; r,§, r)=(0,0). If, however, we also im-
pose a small perturbation on some parameter p, the posi-
tion of the fixed point is shifted along some line in phase
space by an amount proportional to the perturbation.
Denoting this perturbation as p;;, the evolution equa-

(1)
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tions now become
Eniv1=MEt(1—=ADawp; 41,
§riv1=28, i T (1—=A))ayp; 4y 5

where the coefficients «; and a, are the projections of the
shift vector 0&y /dp determining the change in the fixed
point position along the corresponding eigenvectors with
change in the parameter p.

If a second perturbation p; ,, is made at the next step,
the second iteration will be given by

él,i+2=)‘%§1,i+(1—)"l)al()"lpi+l+Pi+2) >
§Z,i+2=A'%§2,i+(1_)"2)a2(}"2pi+1+pi+2) .

Note that the eigenvalues are assumed to be independent
of the parameter perturbation, at least to leading order.
From Eq. (3) it follows that &, ; ., and &, ; ;, can be set
equal to zero by an appropriate choice of the perturba-
tions p; ;, and p; ;,, which are found as a solution of the
linear system provided A;7A, and ;0. The require-
ment of the system eigenvalues to be nonequal and the
parameter perturbation to displace the system along all of
the unstable manifolds are the main conditions for
achieving stabilization of multivariable systems using a
single parameter.

Figure 1 shows an application with A;,=1.5 and A,=3,
where the system has evolved away from the unstable
fixed point at the origin to the point marked 0. In the
first perturbation, the fixed point is moved along the shift
vector 3€;/0p to Ep=(£, p,€, ;)'. The system state
evolves relative to the shifted fixed point according to the
multipliers to the point marked 1. In the second pertur-
bation, the fixed point is moved again along the shift vec-

(2)

(3)
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FIG. 1. Geometrical description of control method. Appli-
cation to a two-variable system with a fixed point characterized
by A,=1.5 and A,=3. Two successive perturbations cause the
system to evolve from point O to point 2, corresponding to the
fixed point of the unperturbed system.
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tor to §i~=(§1, o, r)%. The system now evolves relative
to this fixed point position to the point marked 2, which
corresponds to the targeted fixed point of the unper-
turbed system.

This example provides a graphical description of the
targeting procedure; however, it differs from the opera-
tional procedure in that the sequence of n controlling
perturbations must be determined in advance. In real-
time applications of the algorithm, the value of the con-
trolling perturbation is updated at each step. For the
two-variable example, the i + 1 perturbation is

Piv1=kE1,itka8s s 4)

where the coefficients k; and k, are chosen to ensure that
the fixed point is targeted on the second iteration. There
are several possibilities for finding the appropriate k; and
k, when the system coordinates or all independent sys-
tem variables are known. The approach originally sug-
gested by OGY targets the stable manifold of a state with
one unstable direction [12]. If the fixed point has two un-
stable manifolds, it can still be targeted using Eq. (4) with
two successive perturbations [29]. In the absence of
noise, control equations (3) and (4) each produce the same
sequence of two perturbations for targeting the fixed
point.

In experimental settings, we commonly do not have ac-
cess to the actual system variables, nor can we monitor n
independent observable variables. Time-delay embedding
techniques can be used to reconstruct the system state
around a periodic orbit [12] provided that a correction
for the shift of the Poincaré section is carried out
[25,28,29]. Here we present a general approach for
reconstructing the system state from the readings of one
observable variable in the presence of perturbations. The
approach is applicable to system dynamics on a Poincaré
section or around a steady state.

In general, we monitor some observable x that is a
linear combination of the system variables. For our two-
variable illustration, we have

x;=t,81,; T8, - (5)

The choice of variable x is largely unrestricted; however,
the expected unstable behavior must be observable by
monitoring x.

We will show that the system state vectors &, scaled by
projection coefficients t;, can be reconstructed from suc-
cessive readings of x and p. We rewrite Eqs. (2) fori —1
and then sum the first multiplied by A,¢; with the second
multiplied by A,¢,, and with Eq. (5) for i — 1 obtain

}\Il}\/zxi__l'{"[}\,z(l—}\,l)altl +}\'1( 1 _)\'z)azt2 ]pi
=M€, T A6, - (6

The system state (¢,§; 1,2,§; ,) can therefore be found as a
solution of Egs. (5) and (6) from the x;, x; _;, and p;, pro-

vided that A,;7A,. The control equation (4) can then be
written as

Pi+1=9xx;tq,x; 1 +trp;, (7

where coefficients q,, g,, and r; can be expressed through
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the system parameters. It follows from Eq. (6) that the
term involving x; _; disappears from the control equation
in the case when one of the manifolds is strongly attract-
ing (for which A,~0). This corresponds to the recursive
feedback algorithm of Rollins, Parmananda, and Sherard
[24] for the control of highly dissipative systems. It also
follows from Eq. (6) that when the perturbation does not
significantly shift the fixed point off the unstable manifold
(Ay=0 and a,~0) the simple map-based algorithm
[16,17] is recovered.

We show in Sec. III that n successive readings of the
observable x and n —1 values of the previous perturba-
tions are required to control an n-dimensional system.
We also show how the coefficients ¢q,, g,, and r, of the
control equation can be found, along with other system
unknowns, from the time series of the experimental ob-
servable.

System identification and control

The control algorithm requires that the dynamical sys-
tem be continuously interrogated by imposing random
perturbations on a suitable parameter p at regular sam-
pling intervals. The time series obtained by recording
some observable x then consists of a set of data pairs:

(x1,p1),(x9,09),(x3,p3),. . (x,pi) . (8)

For a system with two independent variables, we need to
record at least seven data pairs (i.e., 3n +1) to allow
identification of the system. Control can then begin with
the parameter perturbation pg.

The time series can be fitted to a recursive SISO model
[30] of the form

X, 1=a,x;tax; _;+tag+b,p; ., +bp; - 9)

This form is also known as an autoregressive with auxili-
ary input (ARX) equation [31]. The number of fitting
coefficients a and b and their relation to the system pa-
rameters is discussed in Sec. III. For the two-
dimensional system, n =2 and there are five unknowns:
ay—a,, by, and b,. Applying this approach to obtain the
data pairs in (8) produces a set of five equations, which
we can write explicitly as

xXy=ayx,ta,x,+tag+bp;+bp,,
(10)

x,=a,x¢+a;xs+ag+by,p;+bpg ,
where the coefficient a, is related to the fixed point x5 by
ap=(1—a,—a,)xp . an

We note that a; =0 if x5y =0, which we assume in the fol-
lowing treatment. (Alternatively, the optimal values of
the coefficients could be determined more precisely from
a larger data set using singular value decomposition, but
here we proceed from this minimum basis set.)

The eigenvalues A; and A, governing the ‘auto-
nomous” system, i.e., the system in the absence of pertur-
bations, can be determined from the a; coefficients.
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Motion along the ith eigenvector occurs with x, <A}, and
substituting the corresponding terms into (9) yields the
characteristic equation for the system eigenvalues:

—A%2+a,A+a,=0. (12)

The eigenvalues of the ‘“closed-loop” system under
control can be obtained by deriving the recursive model
in a form that does not depend on the perturbations. We
obtain the perturbation-independent equation by combin-
ing Egs. (7) and (9) to express p; ; ;:

_ rX; 1t (bigy—riay)x; +(byqy—ra)x; 4
Pit1 rib,+b, '

(13)

Equation (13) for p; and p; ., can be substituted into Eq.
(9), allowing x; , ; to be expressed as a linear combination
of x;, x; _, and x; _,:

Xi1=lx;Hhox, o +hx_,, (14)
where

Iy=ry+a,+b,q,, l,=a,—rya,+bq,+byq,, 15)
li=bygy—ayr; .

The controlled system is described by Eq. (14) and is
characterized by a total of three eigenvalues, A,A,, and
A3, which can be found as roots of the polynomial

— A4+ LA+ LA+, =0. (16)

We achieve stabilization using the pole placement tech-
nique, i.e., by requiring these eigenvalues to adopt the
target values Af,AJ, and A}. The roots of Eq. (16) will
have the appropriate values of A} when

L =APASAS, Iy=—(ATAS +ASAEHAIAY),
I, =AF+AX+A% . 17

There is some freedom in selecting the target values.
In general, we require |A¥| <1 so the system converges
toward the fixed point: the smaller the magnitude of the
target eigenvalues, the faster the convergence will be.
When all. of the eigenvalues of the system under control
are chosen to be zero (so-called “deadbeat” control) the
system should converge to the steady state after n itera-
tions. This, however, may involve the imposition of
larger perturbations at the early stages of control. One
approach is to leave the stable eigenvalues unchanged.
This control results in targeting the corresponding stable
manifolds rather than the fixed point and reduces the
magnitude of the control perturbations. It is important
to note that setting the eigenvalues close to unity is
dangerous, since even small errors in the system
identification can then make the system unstable. Also, if
the system is high dimensional, errors in the system pa-
rameters that are inevitably carried over from the
identification stage may become large. Selecting the op-
timal control law in the presence of system parameter er-
rors is the subject of the H , control approach [32].
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The various coefficients ag—a,, b,,b,, and I,-I; are
now used to calculate the required perturbation to be im-
posed at the next time step:

Ps=¢qx7tqx¢+qo+rp; . (18)

Here q,, q,, and r, are given by the solutions of Egs. (15)
and (17) and g, is assumed to be zero (which is equivalent
to xp=0). This perturbation is applied at the seventh
sampling time. The process is then repeated, with the ap-
propriate perturbation p, being calculated from xg, x,
and pg.

III. GENERALIZATION TO AN n-VARIABLE SYSTEM

The control algorithm can be generalized to apply to a
system of dimensionality n. The coefficients ay,—a, and
b, -b, are determined by fitting the recursive SISO model
to at least 3n + 1 data pairs collected from the interrogat-
ed system (i.e., the system subjected to random perturba-
tions at each sampling time) and the target values select-
ed for the eigenvalues of the controlled system.

If a sequence of n perturbations p, to p, ., is applied to
an n-dimensional system, the following equations can be
written for n consecutive iterations of the state vector &
(i.e., the coordinates along the system eigenvectors):

§l:§1 ’
E,=rE,+(T—N)p,a,
£=R6,+(T—R)pA+p3)a ,

(19)
£, 1 =A"E (T —R)p, A" 1+ - +p R+p, 4,
where
A, O O 1 0 0
~ |1 N 3
A=lo . 0|, IT=0 " 0f, a=—-. (20)
0 0 A 0 0 1 P

In the general case, the observable variable x is a linear
combination of &;,

x=t-£. 2n
We can therefore rewrite the last equation of (19) as
X, +1=(A"2E)+(p, 1 L T—R)ia) , (22)
where
o Y A
L=\, Ao AM=1E]
Lo A
t;, 0 O 2
=10 . 0|, pori=|  |. (23)
0 0 g, Pn+1
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We can further rearrange Eq. (22) to express x,,; as a

function of x, =(x,...,x,)and p, + =Py, . .., P41 ):
x, 1 =(ax,)+[a?L—A)LT4p, ], (24)
where
-1
1 A Al
a=|: ! : A",
1A, - KZ“
—a, 1 :
A= 0
—a, —a, 1
Equation (24) can be rewritten as
Xip1= @, X;ta, Xt tagx 4
+ay+b,p;+ - +bpi_, 4 - (26)

Equations (24)-(26) provide the connection between
the coefficients a;, b;, and the phase space description of
the system, as used in the OGY control algorithg

a, —1 0 0 b, 0O 0
a_, a, —1 - - 0b,_1 b, O 0
-1 0
a, a o+ a, by b b,
0 a, a,—, 0 b b,
0 0 <. 0 0
0 0O O -0 a O 0 0 - - b

where the /; are the 2n — 1 coefficients that correspond to
the target eigenvalues of the controlled system:

_7\*2"_1+12n717\*2n_2+"'_HZ)‘*_H‘:O' (30)

We note that the overall dimensionality of the controlled
system is increased by (n —1).

In general, the dimensionality of the system will not be
known in advance. Nor can the effective number of de-
grees of freedom always be deduced from the evolution of
the autonomous system in the linear region of the unsta-
ble fixed point. The parameter perturbations used for
control may shift the system onto stable manifolds not
evident in the unperturbed case and reveal additional di-
mensions. On the other hand, the effective dimensionali-
ty can be determined by interrogating the system with the
method outlined above. For spatiotemporal systems,
most of the infinite number of modes will decay rapidly
compared to the sampling period. We follow the sugges-
tion by Auerbach et al. [28] of lumping all the highly at-
tracting manifolds together as one. The effective dimen-
sionality is therefore equal to the number of unstable and
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Specifically, the eigenvalues of the system are the roots of
the polynomial

—A'+a,AM" "+ - +ayhta =0, 27

and the b; coefficients are linear combinations of the pro-
jections of the shift vector. Equation (24) is related to the
Laplace transformation from the state space realization
to the transfer function widely used in classical control
theory [30].

The 2n +1 unknown coefficients of Eq. (26) can be cal-
culated from the time series of a single observable vari-
able. If n is the dimensionality of the system, then 3n +1
successive readings of the variable and 3n +1 corre-
sponding perturbations are required for the solution.
Since n previous perturbations and observations are re-
quired to predict the future of the system according to
Eq. (26), the control law should involve the same number
of variables.

The control perturbation for the i + 1 step is calculated
from the equation

Div1=4nX; Ty Xt Tqx 4y
tqotr, it AP (28)

using the pole placement technique for recursive models
[30]. The coefficients g, —q, and r,—r, _; are the solution
of the linear system

1
—r,— lln—l

—r

= . |, (29)
9n
I

91

—

slowly attracting stable manifolds plus one. The method
of determining n will be illustrated with reference to a
particular example in the next section.

IV. STABILIZING HIGH-DIMENSIONAL STATES
OF THE KURAMOTO-SIVASHINSKY EQUATION

The Kuramoto-Sivashinsky (KS) equation is one of the
simplest nonlinear partial differential equations for mod-
eling spatiotemporal chaos. It has been found to mimic
the dynamical behavior of many different physical sys-
tems, but is most often used to model the spatiotemporal
evolution of 2D flame fronts [33]. The governing equa-
tion for the contour of the front has the form

2
3 _ |3y | | Y,
o o | Taat a0 31)

We use the KS equation as an example of a multidi-
mensional system that can be stabilized with the control
algorithm. With a reaction zone width of L=35.0, a
symmetrical four-cell solution is found to be unstable and
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\/A L

0.0 0.2 0.4 0.6 0.8 1.0
z/L

FIG. 2. Four-cell solution of the KS equation for the system
width L=35.0. The symmetrical solution is unstable at this
value of L, and this profile shows a snapshot in the early evolu-
tion away from the symmetrical state. The observables
»1=W¥(0)—W¥(0.2) and y,=W¥(0)—W¥(0.7) are used to monitor
the spatiotemporal evolution of the profile.

the system diverges away from this state to exhibit spa-
tiotemporal chaos. Figure 2 shows the front as it moves
away from the symmetrical state and the two quantities,
»y, and y,, that serve as the “experimental” observables to
monitor the spatiotemporal evolution of the profile. A
two-dimensional projection of the phase portrait con-
structed from these observables is shown in Fig. 3, where
the system is evolving away from the unstable state. Al-
though the evolution of the system is followed very close
to the unstable state, it is clear that the behavior is high
dimensional. Generally, the time series of only one ob-
servable variable provides enough information for con-
trol. Figure 4 shows the corresponding time series gen-
erated from the observable y,, which is used as the moni-
tored variable in the control algorithm. The points in

3.30 T T T T

n-2
3.25 b

3.20 - :
Y

3.15 1

n+1

3.05

. . . .
2.80 2.90 3.00 3.10 3.20 3.30
Y

FIG. 3. Phase portrait showing evolution of system away
from symmetrical four-cell solution. Two-dimensional projec-
tion is constructed from the observables y; and y,.
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320 |

x=Y,

315 |

a.10

3.05 . .

50.0 100.0 150.0 200.0

t

FIG. 4. Time series showing observable y; used in
identification and control as the system evolves away from the
symmetrical four-cell solution.

Figs. 3 and 4 show the sampling times of the monitored
variable.

A. Determination of dimensionality

The evolution of the four-cell front away from the un-
stable symmetric solution—where a random perturba-
tion is applied to a selected parameter at each sampling
interval—is shown in the identification part of Fig. 5.
The parameter chosen for perturbation is the gradient
0Y/9dz at z=0. The unperturbed boundary condition,
corresponding to the autonomous system in Figs. 3 and 4,
is 0¢/9z =0 at this point. In general we utilize “mirror”
boundary conditions, where the first and third derivatives
in Eq. (31) are required to be zero at the boundaries.

The data pairs (x;,p;) from the perturbed system (up to
t=250.0 in Fig. 5) are used to determine the dimension
and the corresponding eigenvalues of the autonomous
system. Error estimates for different choices of n are ob-
tained by summing the error between the measurements
and the optimized n-dimensional fit to Eq. (26) over the
entire data set. Figure 6 shows the variation of this error

3.1750

(a) Identification Control

3.1740 -

x(t) 34730 . 3 .
3.1720 : 1
. —— . . H L TR

5.1710
0.010

(b)
0.005

p() 0.000 |

-0.005

-0.010

0.0 102).0 202):0 306.0 400.0 500.0
t
FIG. 5. Identification and control of the unstable symmetri-
cal four-cell solution of the Kuramoto-Sivashinsky equation. (a)
Value of observable x; during identification and control phases,
and (b) value of the controlling parameter p; ;.
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-3.0 + B
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0.0 5.0 10.0 15.0

n

FIG. 6. Dependence of the fitting error of Eq. (26) on n,
showing the plateau from n =9. An effective dimensionality of
n =9 is used for stabilization of the symmetrical four-cell front
shown in Fig. 2. Error E is calculated with respect to the stan-
dard deviation of the predicted amplitude error relative to the
average amplitude of oscillation as shown in the identification
stage of Fig. 5(a).

as a function of n. For n =9, there is no significant
reduction in the fitting error on increasing the effective
dimension, so we choose n =9 for this system. It should
be noted that the small error for convergence (typically
1073 to 10 %) suggests that it may be difficult to deter-
mine dimension from experimental data with this method
due to the possibility of noise at higher magnitudes than
the convergence criterion. The eigenvalues of the unsta-
ble four-cell solution are calculated as the roots of the
equation

—AM+agA¥+ - +a,A+a, =0, (32)

which are shown in Fig. 7. There are six unstable eigen-

05 -

ImA o0}

-0.5 +

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
Re A

FIG. 7. Eigenvalues of the unstable four-cell solution calcu-
lated as roots of Eq. (32). Solid dots represent thé unstable ei-
genvalues of the autonomous system. Open circles show the
stable eigenvalues obtained by interrogating the system with
random perturbations.
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values (modulus >1) and three stable eigenvalues, the
latter corresponding to modes excited by the parameter
perturbations. The eigenvalue of smallest magnitude
represents the lumping of an infinite number of stable
modes that decay quickly compared to the sampling in-
terval.

B. Stabilization of steady four-cell front

Once n and the coefficients a; and b; are determined,
the algorithm is implemented in the control stage from
t=250.0. All the eigenvalues of the closed-loop system
were chosen to be zero by setting /; =0 in Eq. (29). As in-
dicated in Fig. 5, the state is effectively stabilized after
the first cycle of nine perturbations. The control algo-
rithm is applied continuously, with the values of the
coefficients revised after each sampling and then used to
calculate the next perturbation. In the present example,
the magnitude of the control perturbations becomes very
small after two cycles, or on the 19th iteration of the al-
gorithm. We note that stabilization was also achieved
with assumed system dimensionalities of n» =10 and 11.
The higher-order control laws are less desirable in experi-
mental settings, however, due to their higher sensitivity
to errors.

C. Stabilization of periodic two-cell front

The Kuramoto-Sivashinsky equation exhibits fronts
with different numbers of cells on increasing the reaction
zone width L. Each of these fronts loses its temporal sta-
bility through a bifurcation sequence that leads to chaotic
behavior before the next front with more cells is estab-
lished. We now examine the spatiotemporal behavior of
a two-cell front in order to apply the control algorithm to
a periodic orbit with more than one unstable direction.
Specifically, we will stabilize and track a period-1 limit
cycle through a secondary Hopf bifurcation, where the
orbit is characterized by two unstable directions. The os-
cillatory front is monitored by recording the position of
the minimum in the front profile. The minimum in the
temporal oscillations is then used as the system observ-
able. This choice eliminates the need to construct the
n —1 dimensional Poincaré section in time-delay coordi-
nates and is therefore convenient for monitoring high-
dimensional periodic states of unknown dimensionality.
Possible shifts of the attractor [25] do not cause
difficulties because such effects are automatically incor-
porated into Eq. (24) from the identification procedure.
The bifurcation diagram is shown in Fig. 8, where the
minimum of oscillation is plotted as a function of the re-
action zone width. (Further examples of spatiotemporal
behavior in the two-cell KS front along with a detailed
description of the monitoring technique can be found in
Ref. [19].)

The two-cell solution exhibits period-1 oscillations at a
reaction zone width of L=20.7, where we begin tracking.
As the width is decreased, the period-1 orbit becomes un-
stable through a secondary Hopf bifurcation at L=20.57
with the appearance of quasiperiodic behavior. At
L=20.4, the imaginary part of the eigenvalues responsi-
ble for the quasiperiodic behavior become zero and two
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FIG. 8. Bifurcation diagram showing quasiperiodic behavior
of the two-cell front of the KS equation. (a) Solid points show
minimum of oscillations of front profile minimum. Open circles
show the symmetrical oscillatory state tracked from right to left
through the secondary Hopf bifurcation and quasiperiodic oscil-
lations to the region where the unsymmetrical period-1 oscilla-
tion is stable. (b) The real (Re) and imaginary (Im) parts of the
eigenvalues as a function of L shown by solid and open circles,
respectively.

new period-1 solutions appear. As L is decreased further,
the quasiperiodic behavior enters the basin of attraction
of one of the stable period-1 solutions and nonsymmetric
periodic oscillations are exhibited.

The symmetric period-1 solution was stabilized and
tracked through the range of L shown in Fig. 8 (a) using
the control algorithm with n =2. The controlling pertur-
bation of the boundary condition was found to introduce
a negligible displacement along the stable manifolds;
therefore, it was necessary to explicitly consider only two
unstable degrees of freedom for control. The algorithm
was applied according to Eq. (28), with small random
perturbations added to the control perturbations to inter-
rogate the system. This technique allows the coefficients
to be updated every time the bifurcation parameter is
changed by repeating the identification procedure. The
eigenvalues of the periodic state were calculated from the
roots of Eq. (12) and are shown in Fig. 8 (b).

V. CONCLUSIONS

A general method for the control of unstable steady or
periodic states of dynamical systems has been presented.
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The algorithm requires only a single observable quantity
and acts through perturbations imposed on a single sys-
tem parameter. For an n-dimensional system, n previous
observations and n —1 previous perturbations are re-
quired for control. The states that are stabilized under
this control correspond directly to the states of the auto-
nomous system. The algorithm also provides a full char-
acterization of the autonomous state in terms of its
effective dimensionality and eigenvalues. The approach
can be readily applied to experimental systems without
any knowledge of the underlying mechanism or govern-
ing equations.

The effective reduction of high-dimensional dynamics
to a single variable makes the method especially useful
for stabilizing spatiotemporal systems by small perturba-
tions localized in space. Local perturbations were
sufficient for stabilizing stationary and periodic behavior
in the Kuramoto-Sivashinsky equation. We note, howev-
er, that this approach may be less successful in spatiotem-
poral systems with a lower degree of spatial correlation.
Local application of the algorithm in such systems will
likely result in stabilization only within a correlation ra-
dius.

Selection of a particular unstable behavior is also possi-
ble using the control algorithm. Setting one of the
closed-loop eigenvalues to be the same as the eigenvalue
of a chosen unstable manifold will result in a control law
that stabilizes all but the selected unstable manifold.
This approach requires only very small perturbations and
can be used to manipulate the dynamics of a high-
dimensional system by observing only a single variable.
The method may provide a more precise implementation
of ‘“‘anticontrol” recently demonstrated in experiments
with hippocampal brain tissue [11].

When coupled with tracking techniques, the algorithm
provides a model-independent, path-following method for
the bifurcation analysis of experimental systems. The
availability of the eigenvalues means that the character of
bifurcations in experimental systems can be determined
directly, rather than by inference from observations of
qualitative changes in the time series. The algorithm can
also be used to extend the parameter range of desired
responses, such as stable burning in flame systems or
steady output in high-dimensional lasers. It should also
be noted that even though the method has been illustrat-
ed using a discrete-time approach, it can be reformulated
in a continuous-time framework. Such a modification
might allow the stabilization of very fast processes by us-
ing a control law that is precalculated and then imple-
mented with an analog circuit.
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